重庆市枯竭气藏二氧化碳封存可行性

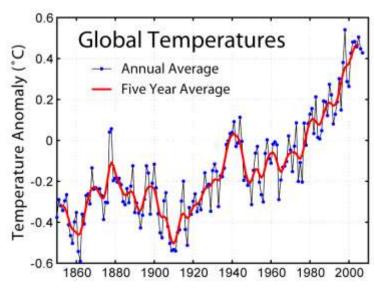
Feasibility of CO₂ Depleted Gas Reservoirs Storage in Chongqing

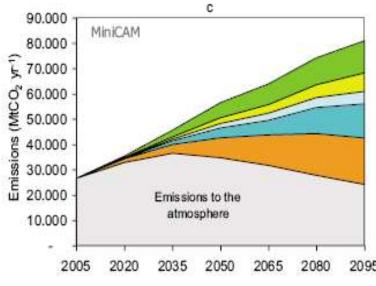
李小春 Xiaochun Li (代讲人: 雷宏武 Hongwu Lei) 中国科学院武汉岩土力学所 Institute of Rock and Soil Mechanics, CAS

合作单位:

中国科学院武汉岩土力学研究所;重庆大学;中国地质调查局水文地质环境地质调查中心;中电投远达环保工程有限公司重庆科技分公司;英国地质调查局;爱丁堡大学

内容提纲

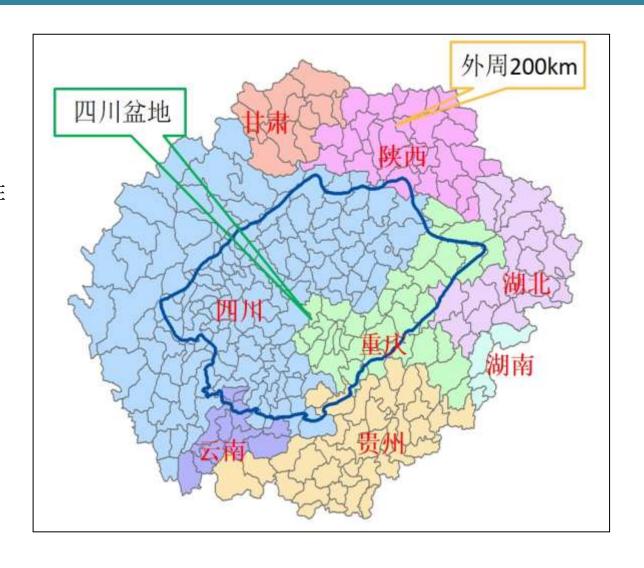

- 1 背景
- 2 重庆枯竭气田CO2封存技术可行性
- 3 重庆枯竭气田CO2封存成本分析
- 4 重庆枯竭气田CO2封存风险分析
- 5 总结


1

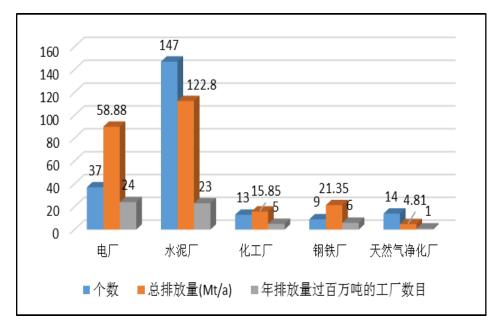
背景

中国对CCUS的需求

- □中国需要减排:我国已承诺在 2030达峰,减排技术储备很必要
- □ 三种减排方式: 节能增效、低碳 能源、CCS/CCUS
- □ 中国CCS/CCUS的作用:
 - · 化石能源长期主导,替代之前的"桥梁"或"过渡"作用,确保化石能源清洁、可持续
 - 降低成本
 - · 增强能源政策与减排措施的灵活性



四川盆地CO2排放源分布


研究对象:

对四川盆地,包括周 边200km范围内CO₂排 放源进行调查,涉及 行业包括:火电、钢 铁、水泥、化工、天 然气净化等行业

四川盆地CO2排放源分布

	年排放源量(Mt/a)							
地区 -	火电	水泥	钢铁	化工	天然气净化	地区总量		
四川	21.33	64.81	13.80	8.96	4.78	113.68		
重庆	14.90	32.42	5.43	4.52	0.03	57.30		
云南	0	2.97	0	0	0	2.97		
贵州	20.32	20.69	0.09	2.36	0	43.46		
陕西	2.33	1.91	2.04	0	0	6.28		
区域总量	58.88	122.80	21.35	15.85	4.81	223.70		

- 排放源集中在水泥及火电行业:两者点源数量占排放源总数的84%,年排放总量占区域总量的81%
- 大排放源也如此:在59处年排放量过百万吨的排放源中,电力和水泥行业各占24处和23处,分别为54.3Mt/a和45.2Mt/a,占区域年排放总量的75%

四川盆地CO2地质利用与封存潜力评估

四川盆地CO₂地质利用与封存技术的理论封存潜力汇总

储集介质	地质利用与封存 技术	公式定义	基础数据来源	封存系数	驱替 系数	评估方法	评估结果 (10 ⁸ t)
% † , □□1	强化石油开采 (EOR)	只计算驱替过程	国土资源部,	0.75	0.11	Dahowski, 2005	0.21
油田	枯竭油气田地质 封存	EOR完成后	2010	0.75		USDOE	0.74
煤层气田	驱替煤层气 (ECBM)	只计算驱替过程	国土资源部,	0.37	0.50	USDOE	3.13
深 层气田	不可采煤层地质 封存	ECBM完成后	2009	0.37		USDOE	6.26
天然气田	强化天然气开采 (EGR)	只计算驱替过程	马永生, 2010;西南	0.75	0.63	USDOE	33.85
八杰(山	枯竭天然气田	EGR完成后	石油志, 2006	0.75		USDOE	53.73
深部咸水层	强化深部咸水开 采(EWR)或咸 水层地质封存	地下水排替	地质分析: 盆地→远景 区→靶区	USDOE		USDOE	154.20
							214 93

理论封存量(枯竭油气田、不可采煤层和咸水层地质封存)合计

214.93

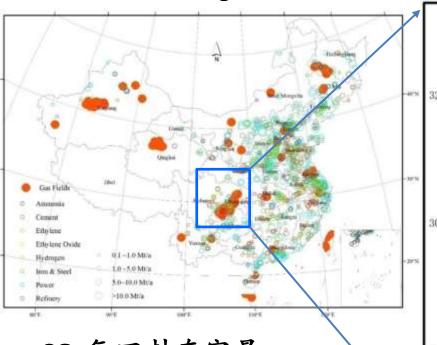
咸水层和天然气田封存容量最大!

四川盆地CO2封存早期示范机会

四川盆地CO₂地质封存技术比较

储集介	↑ 封存潜			经济	技术成	熟度			
	力(10 ⁸ t)	附带产品	工程条件	安全性	性	国际	国内	时机	
天然气 田	53.73	部分气田 可利用 CO ₂ 驱替 增采天然 气	地质资料齐全; 完善的 井场基础设施; 与工业 园区之间有天然气输送 管网连接; 增压站、分 输站、脱硫站; 大部分 气田地势起伏不大; 源 汇匹配情况较好。	部分气田 有诱发有	好	多个中 试运行 中	研究	近期、 中期	
咸水层	154.2		大多缺乏地质资料。但 在气田附近的资料较多, 可借用气田井场基础设 施、天然气输送管网等 设施;川中区地形较为 平坦;源汇匹配情况较 好。	封闭性不确定;大多区域稳定性较好	中	多个百 万吨级 示范	神华 CCS示 范工 程	中期、远期	

全球气田封存项目

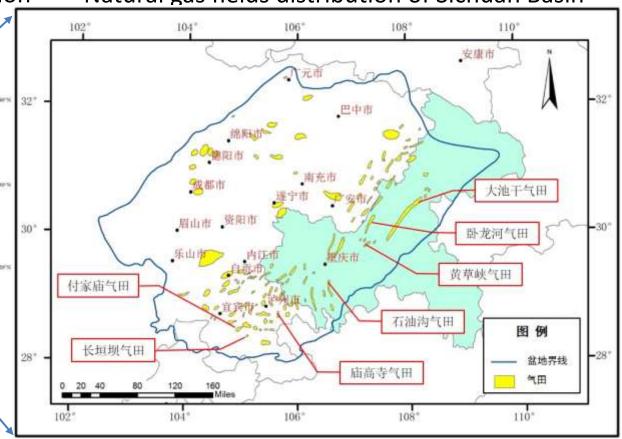


- 国外已达到技术示范阶段。
- 国内研究很少、起步晚。

名称	地点	规模	排放源类型	捕集技术	输送技术	目前的项目阶段
Peterhead Project	苏格兰阿伯丁郡	约100万吨	电厂	可再生胺技术	管道	暂时中止
Lacq CCS Pilot Project	法国南部Lacq盆地	约15万吨	电厂	胺液吸收	管道	结束
Altmark CO ₂ -EGR Project	德国Altmark天然气田	约10万吨/年	电厂		罐车	
CO2CRC Otway Project	澳大利亚的Otway 盆地	约8万吨	天然气伴生	I	管道	第二阶段
K12-B Project	北海荷兰近海	已封存约10万吨	天然气伴生		管道	进行中
ROAD Project	荷兰鹿特丹海岸	约110万吨/年	电厂	化学溶剂吸收法	管道	筹备阶段

中国天然气田封存潜力

中国主要天然气田分布 China main natural gas field distribution 四川盆地天然气田分布 Natural gas fields distribution of Sichuan Basin



• 全国: 40-305亿吨

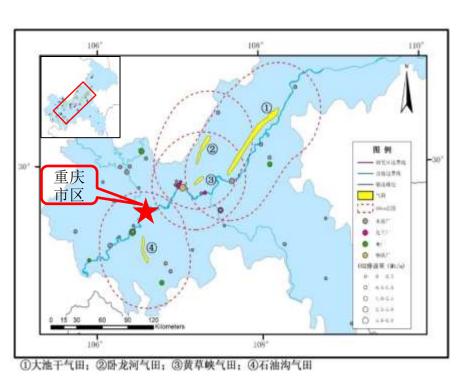
• 四川盆地:54亿吨

• 重庆市: 9.4亿吨

2

重庆枯竭气田CO2封存技术可 行性

项目总体概要


■ 目的:

- 评估重庆开展 CO_2 枯竭气田 封存示范的可行性;
- 在中国、英国以及其他有潜力的国家间分享成果及方法;
- 为政府制定相关科技政策提供科学支撑,为相关企业开展工程示范提供指引。

■ 思路与内容:

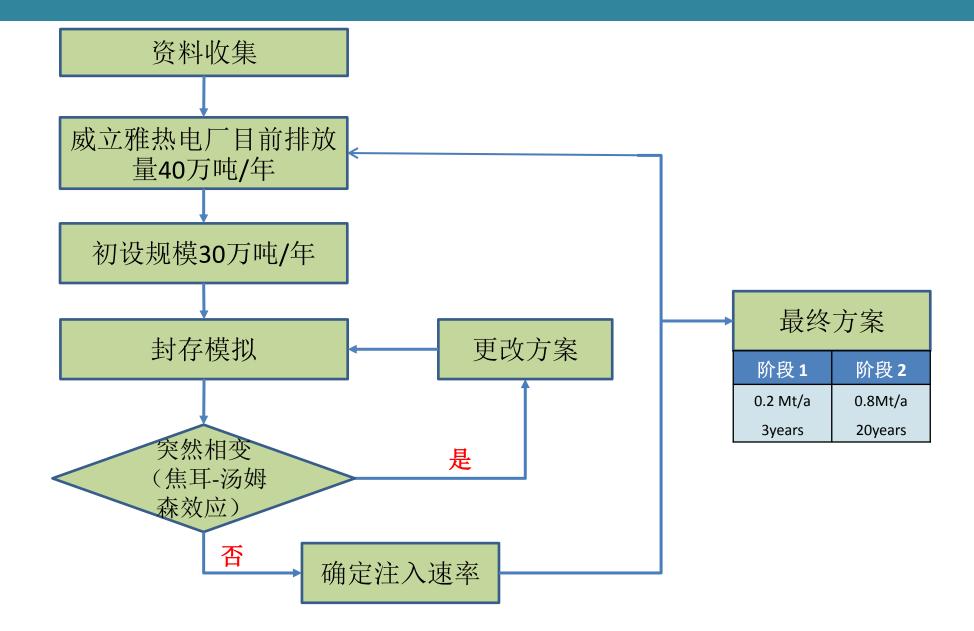
通过设计一个枯竭气藏CO₂封存全流程示范项目,开展其技术经济可行性与风险分析,提出项目开发和融资途径方面的建议。


封存场地-黄草峡气

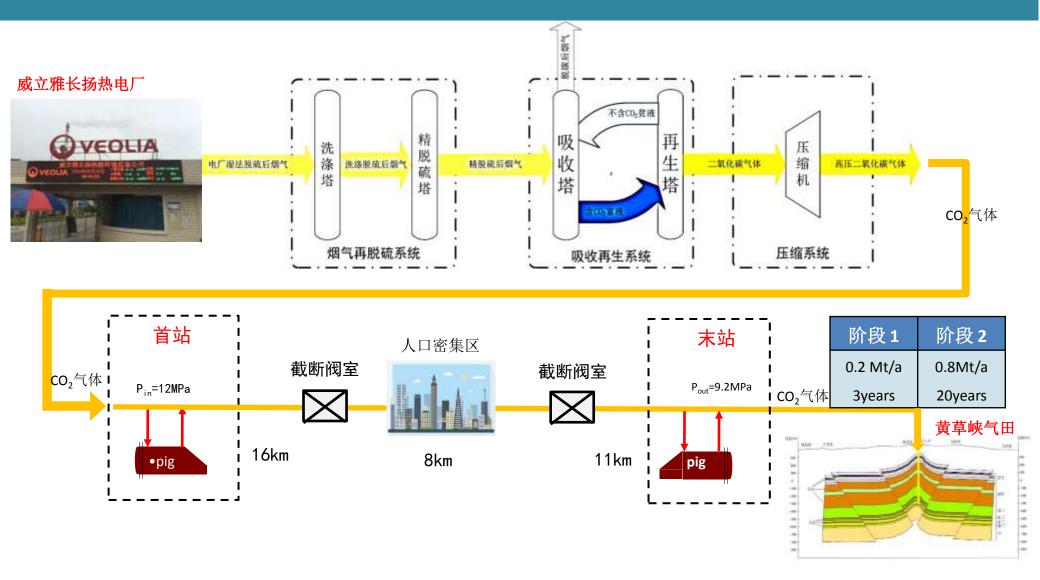
气田名称		大池干	卧龙河	黄草峡	石油沟
封存	容量(Mt)	65.55	51.7	22.9	7.39
开采	程度	开发后期	开发后期	开发末期	开发后期
	50km范围内 排放源数目	10	14	11	11
源汇匹	50km范围内 CO₂排放总量 (Mt/a)	14.26	24.04	22.81	17.50
配情况	50km 范围内 排放源种类	水泥厂 化工厂 热电厂	水泥厂 化工厂 热电厂 钢铁厂	水泥厂 化工厂 热电厂 钢铁厂	水泥厂热电厂
	最近排放源	水泥厂; 7km	化工厂; 27 km	钢铁厂; 15km	电厂; 13km
场地	筛选结果	备选	备选	最优	适宜中小 规模项目

- 黄草峡气田优选;
- 大池干气田和卧龙河气田备选;
- 石油沟气田适宜中小规模的封存项目。

排放源-威立雅热电厂



- 晏家工业园,距离重庆市主城区67公里。
- 有多个排放源备选,可形成CCUS枢纽 的气井。
- 威立雅长扬热电厂: 40~50万吨(电厂 烟气成分适合化学吸收法)


①重庆长寿西南水泥厂;②达尔凯长扬热能(重庆)有限公司;③映天辉氯碱 化工有限公司;④四川维尼纶厂;⑤重庆钢铁集团

名称	类别	CO₂浓度	排放量(万吨/年)	直线距离(km)
重庆长寿西南水泥厂	水泥厂	25%~35%	15	21
四川维尼纶厂	化工厂	12%	300	19
威立雅长扬热能(重庆) 有限公司	电厂	12%	40~50 (扩建后达100万吨 / 年)	21
重庆钢铁集团	钢铁厂	不均匀	900~1000	15
映天辉氯碱化工有限公司	化工厂	不确定	15~18	20

项目方案设计路线图

系统流程总图

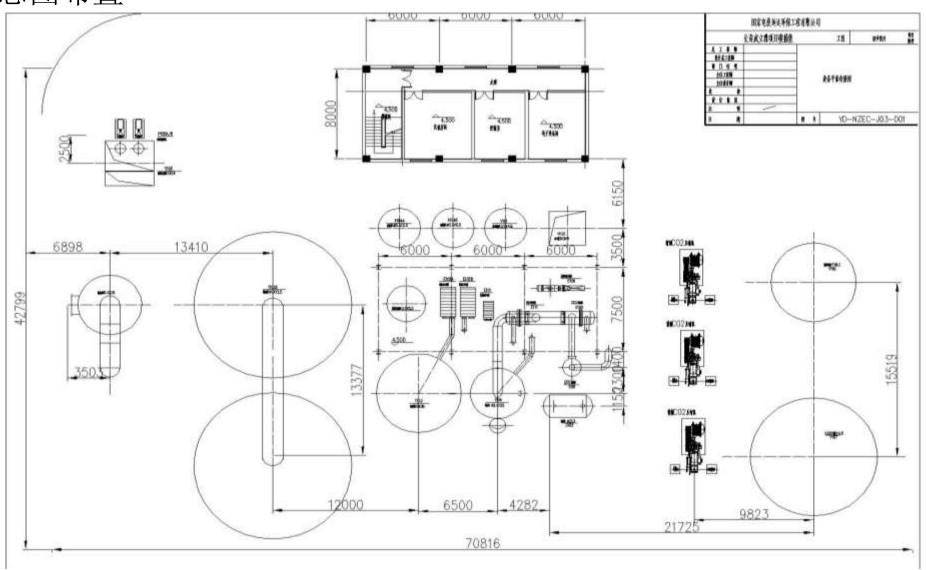
捕集工艺选择

- ▶ 威立雅长扬热电厂(重庆)
- ▶ 排放源概况: 一期规模为2×130t/h高压循环流化床锅炉+1×25MW汽轮发电机组,2012年10月投入运行,年运行时间8400小时,烟气量17~22万Nm3/h,CO2年排放量约40万吨。
- > 采用燃烧后化学吸收法捕集;

出口压力: 12MPa;

出口温度: 40°C;

尾气排放参数


Parameters of exhaust gas

Component	O_2	CO ₂	N ₂ +Ar	H ₂ O	SO ₂	NOx	Temperature
Unit	V%	V%	V%	V%	mg/Nm ³	mg/Nm ³	°C
Content	5.2	12	70.91	11.89	128	113	50~70

捕集工艺选择

▶总图布置

捕集工艺选择

Capture Process Selection

表1 同规模总阻力对比

规模	10万吨	12.5万吨	15万吨	20万吨	80万吨
总阻力 (pa)	10424	8963	11367	10542	11450

表2不同规模单位能耗差异(每年每吨CO2消耗)

规模	10万吨	12.5万吨	15万吨	20万吨	80万吨
单位电耗(kW·h)	210	195	213	210	215
水 (t)	1.1	1.1	1.1	0.9	0.9

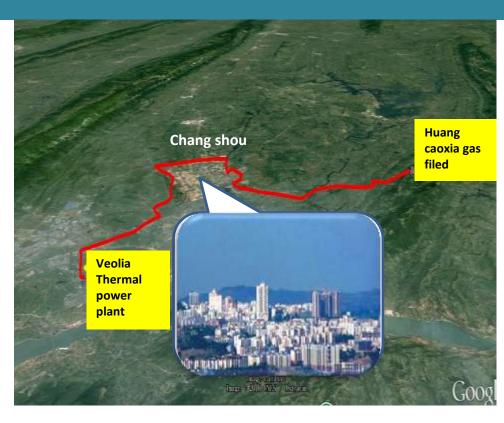
表3 20万吨/年二氧化碳捕集装置主要设备表

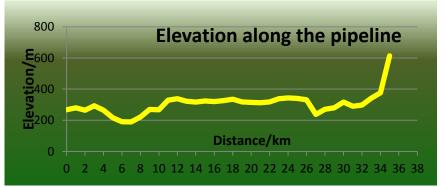
设备	数量	塔径(m)	阻力(pa)
碱洗塔	1	6	2333
脱硫塔	2	12.5	3009
吸收塔	1	7	2200
再生塔	1	4.6	3000
转动设备	数量(台)	备注	
压缩机	3	两用一备	
风机	1		

- 20万吨和80万吨方案由于规模效 应,总体耗水量少,在水耗方面 具备一定优势。
- 目前CO₂排放规模约为40万吨/年, 具备开展20万吨/年碳捕集示范工 程的条件。
- 电厂西侧预留用地及组装场地, 建成后可具备开展80万吨/年CO₂捕 集工程的可能性。
- 20万吨/年规模的碳捕集装置,采 用2用1备的方式。80万吨规模采 用了8台压缩机。

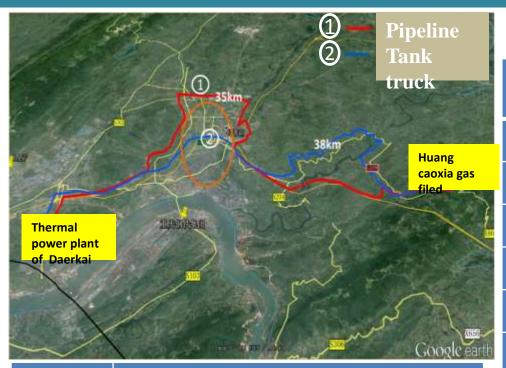
输送工艺选择

◆ 地理条件Geographical conditions


沿线均属于重庆市长寿区,地处重庆腹心,襟长江而临主城。


◆ 地形条件Terrain conditions

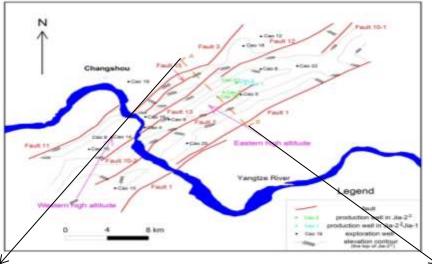
主要地形为丘陵和山地,植被覆盖率高,经济作物主要是水稻,全年平均气温是17.5°C.

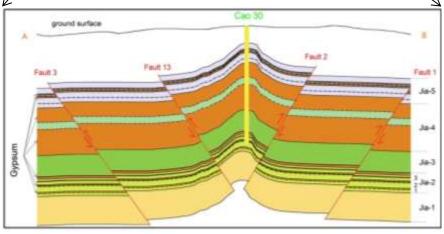

◆ 管输线路The pipeline routing

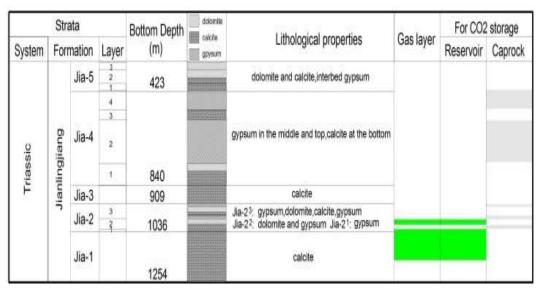
根据即将实施的《二氧化碳输送管道工程设计规范》,管道线路属于一级地区,管道中心两侧200m内人口户数小于15户,远离长寿城区人口密集区100米以上。

输送工艺选择

输送目标	第一阶段3年示范: 20万t/a 第二阶段20年规模化输送: 80万t/a				
输送方案	1	2			
输送工具	管道	罐车			
输送距离	35km	38km			
情况描述	沿道路敷设,前26km地势	沿G319公			
	平坦,后8km高差约200m。	路			


管道输送比较


参数	単位	超临界态 输送	液相输送
进口压力	Pin[MPa]	15	12
出口压力	Pout[MPa]	12	9.2
输送温度	T [K]	308	283
输送规模	M[t/a]		0.8
输送距离	L [km]	35	35
CO2压缩因 子	Z _{CO2}	0.32	1
CO2密度	ρ_{CO2} [kg/m ³]	625	1025
钢材密度	ρsteel [g/cm³]	7.85	7.85
电力价格	pc [RMB/KW.h]		0.54
	N[yr]		23yrs
折旧年限	Phase 1	3yrs	3yrs
	Phase 2	20yrs	20yrs

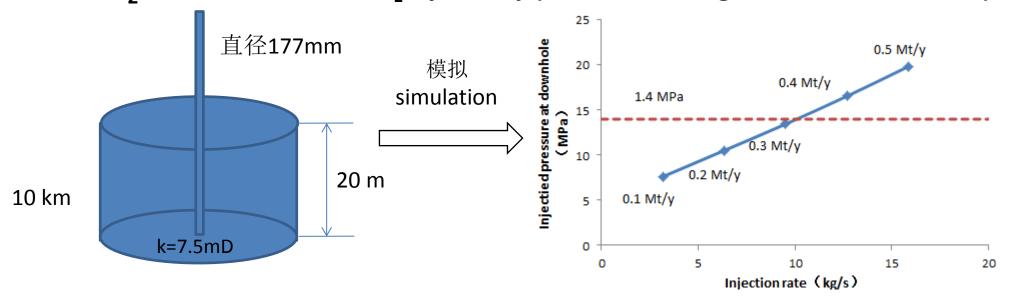

封存工艺选择

储层和盖层 Reservoir and Caprock

黄草峡构造 Huangcaoxia structure

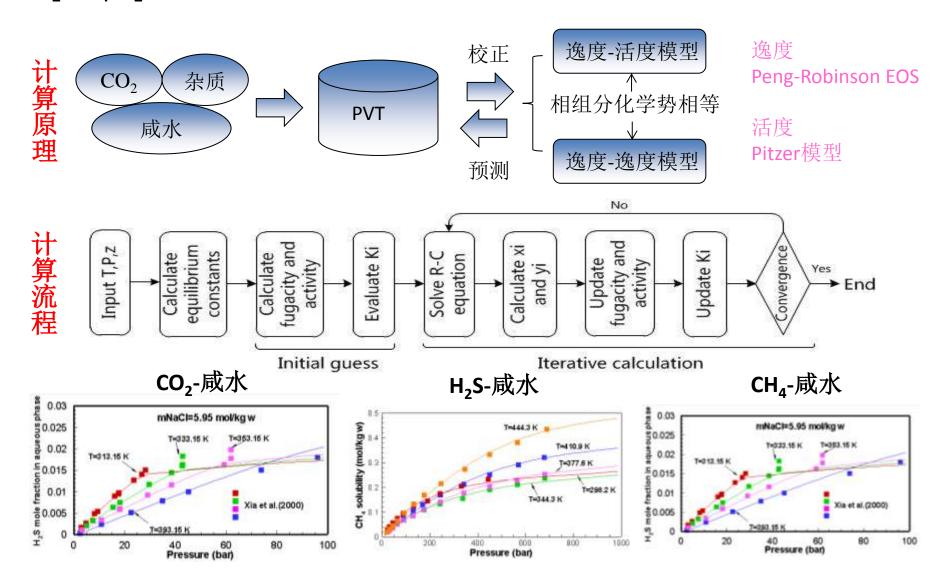
CO₂ 注入方案 CO₂ injection strategy

井的类型 W ell Type	井名 Well Name	速率 Rate (10⁴t/y)	目标层 Target formation	运行时间 run time (years)
	Cao30	优化计算 Calculation	Jia-2 ²	0-3
注入井 Injection well	Cao31 Cao9 Cao6 Cao22	优化计算 Calculation	Jia-2 ² Jia-2 ¹ -Jia-1	4-23
监测井 Monitoring well	Cao31	-	Jia-2 ²	0-3

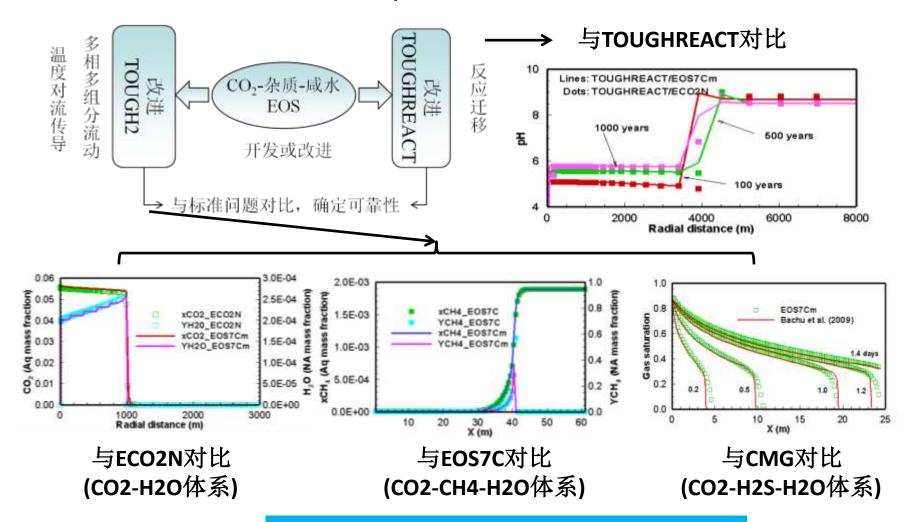

封存容量和注入能力初步评价

◆ CO₂理论封存容量 Theoretical CO₂ storage capacity

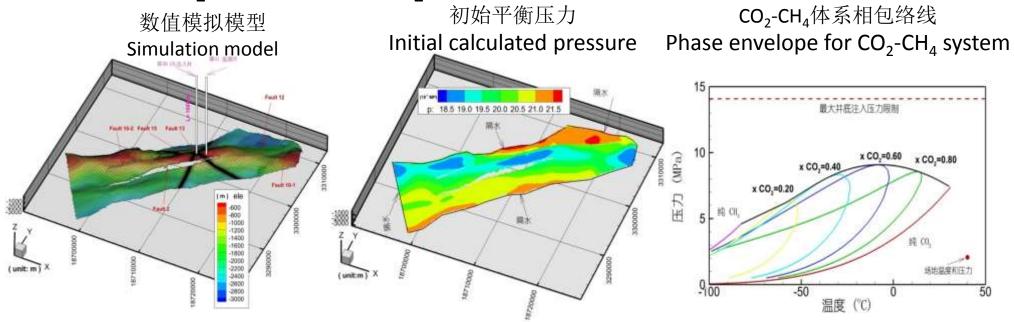
$$M_{CO_2} = \rho_{CO_2 \text{res}} R_f (1 - F_{IG}) \cdot OGIP \cdot [(P_S Z_r T_r) / (P_r Z_s T_s)]$$


Reservoir	R_f	<i>OGIP</i> (10 8m³)	<i>P_s</i> (MPa)	<i>T_s</i> (°C)	Z_{s}	<i>P_r</i> (MPa)	<i>T_r</i> (°C)	Z_r	$ ho_{CO_2 res}$ (kg/m³)	M _{CO2} (Mt)
Jia-2¹-Jia-1	0.9	20.93	0.101	20	0.998	14.12	50	0.843	698.7	8.6
Jia-2 ²	0.9	33.84	0.101	20	0.998	13.83	40	0.834	720.3	14.3

◆ CO₂注入能力初步评价 CO₂ injectivity (not considering Joule-Thomas effect)


数值模拟软件开发和验证

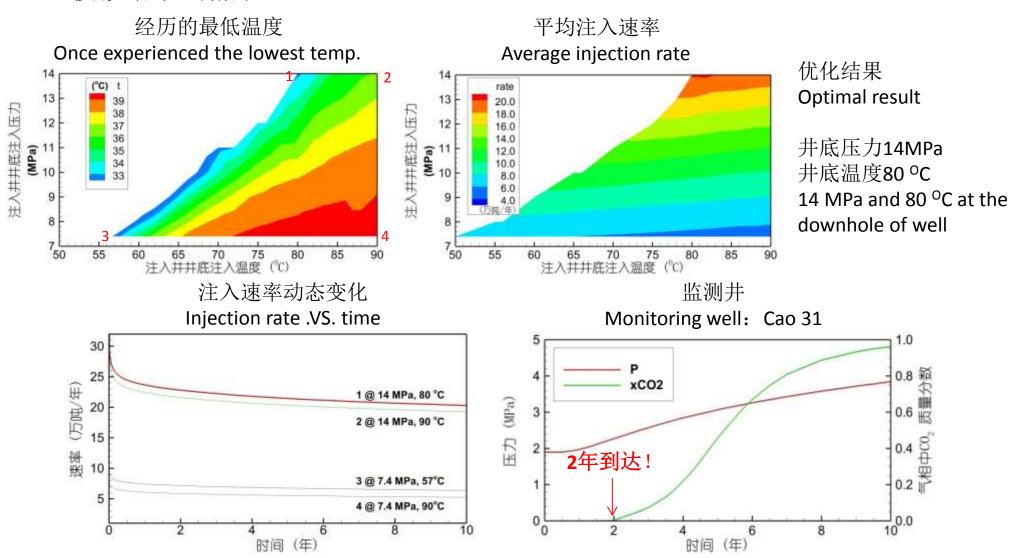
◆CO₂-CH₄-H₂S-咸水体系的热力学模型(最高温度达200 °C,压力600 bar)


数值模拟软件开发和验证

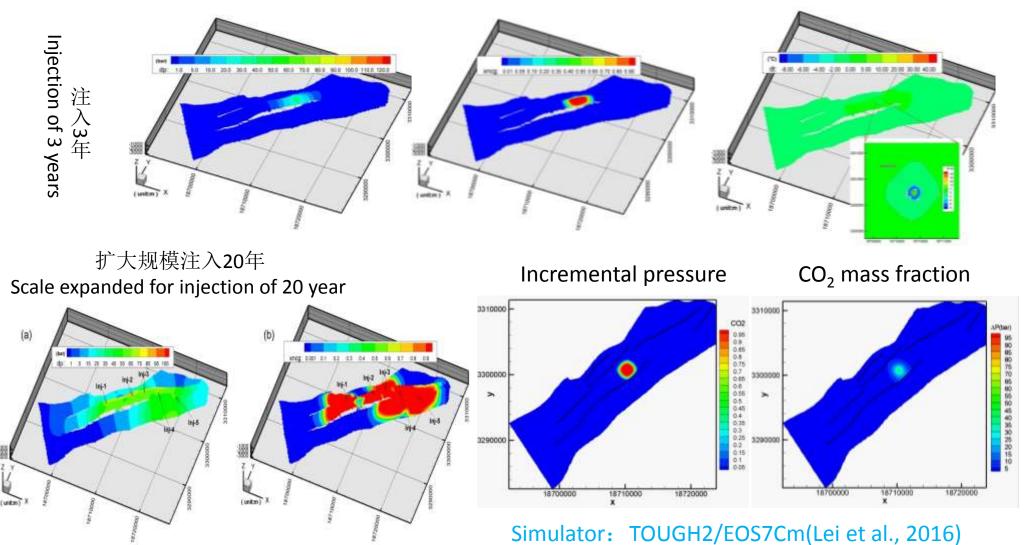
◆模拟器EOS7Cm开发-耦合TOUGH2/TOUGHREACT

T、H、C过程均对上,改进的模拟器可靠!

◆Jia-2² 层CO₂注入数值模拟 CO₂ injection simulation in Jia-2² formation

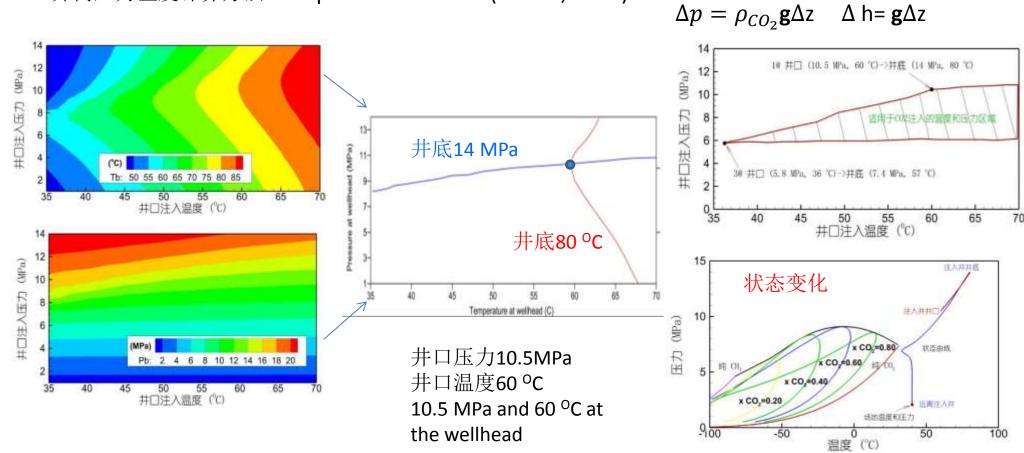


参数Parameter	取值Value
渗透率Permeability	7.5 mD
孔隙度Porosity	0.05
厚度Thickness	20 m
初始条件Initial condition	Cao 30井底压力2MPa,气体 饱和度80%,温度40 °C,H2S: 13 g/m ³ (2%)


注入考虑 Consideration for injection

- ➤ 定压力注入 Fixed pressure injection
- ➤ 井底最大压力14 MPa Limited pressure of 14 MPa at the downhole of well
- ➤ 体系温度应始终大于31.26 °C Temp. should be always larger than 31.26 °C
- ➤ 优化计算井底需要的最低温度 Optimal calculation for determination of injection temp.

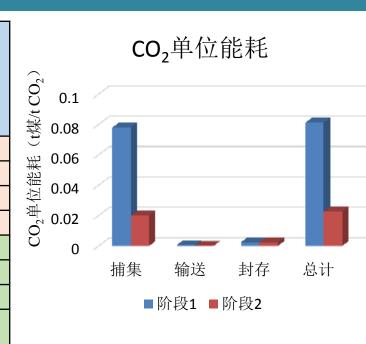
◆模拟结果 -储层 Simulation result-reservoir


◆模拟结果 –储层 Simulation result-reservoir

◆模拟结果 –井筒 Simulation result-wellbore

已知井底温度和压力,反求井口温度和压力? Know P and T at downhole, what are P and T at wellhead?

井筒压力温度计算方法: "top-down method" (Pruess, 2006)



3

重庆枯竭气田CO。封存成本分析

系统能耗

					-	_
阶段	环节	年能耗 (10 ⁴ kW h/a)	总能耗 (10 ⁴ kW h)	能量折算值 (10 ⁴ MJ/a)	折合标准煤 (t/a)	CO ₂ 单位能 耗 (t煤/t CO ₂)
	捕集	4200	12600	45738	15605.97789	0.078029889
阶段一 (20万吨/年,	输送	34.5	103.5	375.705	128.1919612	0.00064096
运行3年)	封存	135.127	405.381	1471.53303	502.0926129	0.002510463
(113 1)	总计	4369.627	13108.881	47585.23803	16236.26246	0.081181312
	捕集	4300	86000	46827	15977.54879	0.019971936
阶段二	输送	34.5	690	375.705	128.1919612	0.00016024
(80万吨/年,	封存	540.507	10810.14	5886.12123	2008.366736	0.002510458
运行20年)	总计	4875.007	97500.14	53088.82623	18114.10749	0.022642634

- 捕集环节的能耗是最高的,占整个系统能耗的88%~96%;
- 规模扩大后CO₂单位能耗降低了72%;
- 捕集: CO₂吸收解析过程的加热冷却耗能;
- 封存:增温及压缩设备耗能。

系统成本

	环节	成本	阶段1: 3年示范	阶段2: 20年规模化	均化成本 [元/ tcO ₂]	成本合计	
ı			(0.2 Mt/a,3yr)	(0.8Mt/a,20yr)	_		
		固定投资[万元]	11234	17969			
	捕集				290.69	482555	
		运营维护成本[力元/年]	5663.51	21818.05			
		固定投资[万元]	964	40.94			
	输送	运营维护成本[万元/年]	454.18	545.75	13.20	21918.48	
		固定投资[万元]	903.50	1813.48			
	封存	运营维护成本[万元/年]	141.18	533.24	8.32	13805.32	
		系约	312.21	518278.8			

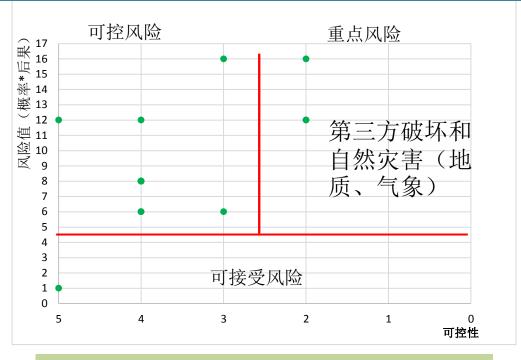
均化成本[元/tCO2]

- 初步估算整个系统成本为约为51.83亿元,均化成本312.21元/tCO₂。
- 捕集部分所占整个系统成本比重最大,占比93.1%(48.26亿元)。
- 若大规模推广枯竭气藏CO₂封存技术示范,重点在捕集成本的降低。

系统投资 System Investment

		方案一	方案二	方案三	方案四
贷款比例		50%	50%	100%	100%
贷款利息		2%	6%	2%	6%
	贷款金额(万元)	14601.5	14601.5	29203	29203
捕集部分	阶段1+阶段2总成本(万元)	484329	490799	487564	500504
	均化成本(元/tCO ₂)	291.76	295.66	293.71	301.51
	贷款金额(万元)	4820.47	4820.47	9640.94	9640.94
	每年还款金额(万元/年)	558.33	735.90	1116.65	1471.80
输送部分	输送工程固定总投资终值	10814.12	13971.16	11987.29	18301.38
	阶段1+阶段2总成本(万元)	23369.25	26526.29	24542.42	30856.51
	均化成本(元/tCO ₂)	14.08	15.98	14.78	18.59
	贷款金额(万元)	1358.49	1358.49	2716.98	2716.98
 払去効八	投资成本(万元)	2994.65	3720.57	3272.32	4724.16
封存部分 	阶段1+阶段2总成本(万元)	14082.99	14808.91	14360.66	15812.5
	均化成本(元/tCO ₂)	8.48	8.92	8.65	9.53
	贷款金额(万元)	20780.46	20780.46	41560.92	41560.92
系统	阶段1+阶段2总成本(万元)	521781.24	532134.2	526467.08	547173.01
	均化成本(元/tCO ₂)	314.32	320.56	317.14	329.63

融资建议 Financing Recommendation



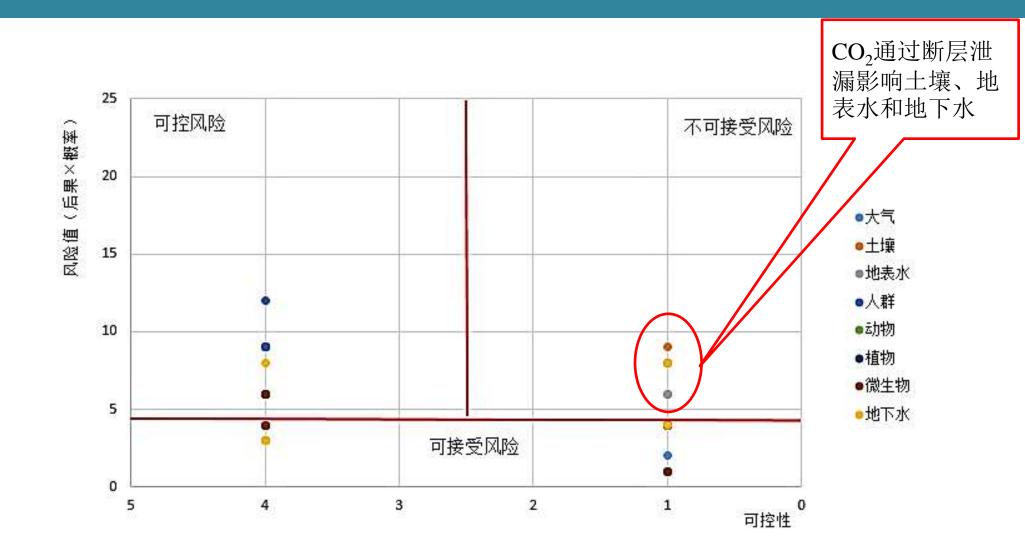
4

重庆枯竭气田CO2封存风险评估

输送风险评估

ム中		风险评价	古	
编号	风险列表	后果 (1~5)	可能性 (1~5)	可控性 (1~5)
1	系统设计缺陷	4	2	4
2	系统设计材料不足	4	2	4
3	设计不当(不当的阀门布置)	4	2	4
4	装置建设过程中操作不当	4	2	4
5	使用设备或材料质量不过关	4	2	4
6	超压运行	4	2	4
7	运行中故障、泄露、腐蚀	4	3	4
8	运行中操作失误	4	2	4
9	运行中的人为失误	4	2	4
10	第三方造成的无意破坏	4	4	3
11	第三方造成的故意破坏	4	4	2
12	地层/土壤移动对管道/设备/ 阀室的破坏	4	3	2
13	暴雨/洪水对管道/设备/阀室破坏	4	3	2
14	外部腐蚀	3	2	3
15	管道放空操作引起非故障泄露 和腐蚀	3	4	5
16	维修造成的故障、泄露、腐蚀	3	2	4
17	调试过程中的故障、泄露、腐蚀	3	2	4
18	CO ₂ 气源中断	1	1	5

风险值<=4,风险可接受;可控性>=3,风险可控

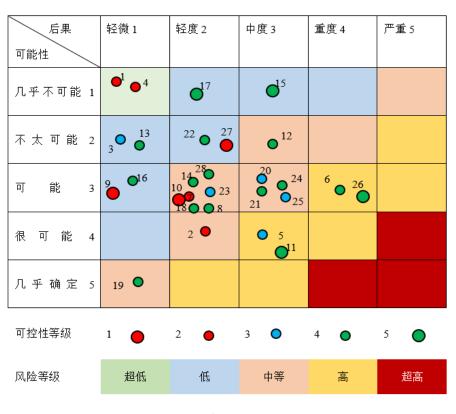

对于本项目:

- ◆ 长寿区工业和大型建筑活动较少,如果做好公众宣传和管道标识,第三方破坏的风险将大大降低;
- ◆ 长寿区多雨,可能发生的土壤移动概率较大,但如今预报准确,且管道输送的完整性管理很完善,做好监控措施和预案准备将有助于抵抗各种自然力。 评估结论:

封存风险评估

	风险事件	可		后身	具 (3	环境	风险	受何	太)		可	说明
编	名称	能	大	土	地	地	人	动	植	微	控	
号		性	气	壤	表	下	群	物	物	生	性	
					水	水				物		
1	CO ₂ 通过盖层泄	2	1	1	1	4	1	1	1	1	1	项目前期详细的场地资料和合理的选址能够最大限度
	漏											地降低事件发生的可能性,但是一旦选址确定,没有
												其它有效的措施能够降低可能性,仅能通过合适的监
												测手段尽早发现,一定程度上降低其后果。
2	CO ₂ 通过断层泄	2	3	3	2	4	2	2	2	2	1	同上
	漏											
3	CO ₂ 通过已有井	3	3	3	2	4	3	2	3	2	4	场址范围内存在二十几口井,已有井的存在容易形成
	的泄漏(废井等)											CO ₂ 的泄漏通道,但是良好的封井和弃井工作能够降
												低该风险,较易控制。
4	井喷	3	3	3	1	3	3	2	2	2	4	合适的注入量与注入率设计能够控制该风险的发生
5	因资源开采活动	2	3	3	1	3	3	2	2	2	4	场址无主权问题,范围内的开采活动主要是气田开采
	导致CO ₂ 泄漏											为主,且该气田已进入开发末期,目前仅有2口生产
												井,较易控制。

封存风险评估



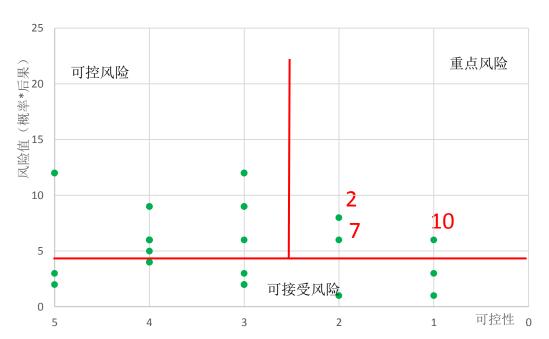
		整个项	页 目	启る	<u>力</u>			运						风险		
	风险	(W)、 ⁹ 捕集(C) 封存(E) 环节	C) T)	机会分析	计划	设计	建设	捕集	运输	注入		闭场后	后果 (1~5)	可能性 (1~5)	可控性 (1-5)	说明
1	法律的不确定性,包括 孔隙空间所有权	W		X	X	X	X	X	X	X	X	X	1	1	2	场址为枯竭气田,不存在所有权 问题。
2	集成项目不确定的成本 和法规,例如封堵和遗 弃(闭场、闭场后)										X		2	4	2	国内CCUS相关法规未完备,
	公众参与(公众的反对 风险沟通、数据的公开 披露等)			X	X	X	X	X	X	X			1	2	3	枯竭气田封存,风险可能性低
4	未获得项目许可	W		X	X	X	X	X	X	X	X		1	1	1	国内尚无示范工程未获得许可的 先例
5	缺乏财政驱动,例如 CO_2 价格、额度和收益 (油或其它产品)					X	X	X	X	X			3	4	3	CO2价格波动大,影响项目运营
	项目财政资金成本不足			X	X								4	3	3	增加融资渠道,寻求财政支持,
7	预期外的建设或操作成 本变化	S				X	X	X	X	X	X		2	3	2	能有效降低风险
8	CO ₂ 供应的不确定性	W						X		X			2	3	4	工业园内排放源多,风险可控
9	碳排放核算缺失	W					X	_		X			1	3	1	对该项目的影响极小
10	技术放大	W				X	X	X	X	X			2	3	1	无放大机会,储层空间有限
11	缺乏单元操作知识和合 格资源	W		X	X	X	X	X	X	X		X	3	4	5	选择适当的团队,增强人员培训 能够有效降低风险

		*	启动	力			运营	r I				重庆示	范工程相	关风险	
编号	风险	整个项目(W) 或者 捕集 (C)、 编 (T)、封 存(S) 环节	机会分	计划	设计	建设	捕集	运输	注入		闭场后	后果 (1~5)	可能性(1~5)		说明
12	项目对环境的影响	W				X	X	X	X	X	X	3	2	4	主要是对地下水的污染, 在采取完备的环评工作前 提下,具有很好的可控性
13	外部自然对项目的影响	W					X	X	X	X	X	1	2	3	影响有限
	外部人为活动对项目的影响	W					X	X	X	X	X	2	3	4	主要是对管道及地表设施 的影响,加强宣传、增加 警示标志、定期检查等能 降低该风险
15	场址的不确定规划,与其他使用 及权利的冲突	W				X	X	X	X			3	1	5	经营主体与场地使用权主 体统一
	意外、故意中断或间歇性的CO2 供应、进入或运输						X	X	X			1	3		枯竭气田封存,没有增强 油气开采,故意中断或间 歇性供应的可能性较低
17	多个项目共用设施(不确定的所 有权、性能或缺乏协调)	C≒T≓S					X	X	X			2	1	5	无共用设施
18	使用已有的设施(特别是管道: 条件认知、对其他用户的义务、 CO2或材料规格、不确定的时间			X	X	X		X	X			2	3	4	根据吉林油田经验,可控性高
	意想不到的相变	C≒T≓S							X			1	5	4	压力低,存在可能的相变 可控性好
20	CO2不符合规格:源气体不符合 预期	$C \rightarrow T \rightarrow S$					X					3	3	3	可控性较好

		整个项目		动			运营						范工程相	关风险	
编号	风险	(W)、或者 捕集(C) 运输(T) 封存(S) 环节	机会	计划	设计	建设	捕集	运输	注入	闭场	闭场后	后果 (1~5)	可能性 (1~5)	可控性	说明
21	组件性能不匹配(能力、资源、灵活性、效率、井的完整性、使用寿命)						X	X	X			3	3	4	可控性较好
22	上游电厂的灵活操作导致捕 集效率低	$C \rightarrow T \rightarrow S$					X					2	2		碳源来自热电厂, 较之火电厂该风险 较低,可控性较好
23	储存资源不足	$S \rightarrow T \rightarrow C$							X			2	3	3	在项目评估阶段可
24	储层性能不如预期(注入性 下降、储存资源、地质稳定 性、封闭性)								X	X	X	3	3	4	解决,区域内井多 可进行井改造,可 控性好
25	储层性能模型的不确定性 (能力、注入性、封闭性)	$S \rightarrow T \rightarrow C$	X	X	X	X			X		X	3	3	3	在下一阶段将获得 更多油气田资料, 提高模型精度
26	维护和应急控制程序、事故 相关安保的不足	C≒T≓S					X	X	X			4	3	5	通过知识共享等能够完善该方面的不足,可控性极高
27	腐蚀和材料问题	C≒T≓S					X	X	X			2	2	4	采取合适的材料能 最大程度降低该风 险

风险矩阵 Risk matrix

风险值≤4



可接受

可控性≥3

可控

- 集成项目不确定性,包括孔隙空间所有权;
- 预期外的建设或操作成本变化;
- 技术放大

5

总结

总结

- ▶ 国家层面: 气田封存与咸水层封存、EOR要同等关注
 - 气田封存潜力大于EOR, 小于咸水层;
 - 四川盆地、松辽、鄂尔多斯、柴达木、准格尔、塔里木等;
 - 重庆、四川最先枯竭,占有早期示范机会
 - 给予资金补贴。
- ▶ 重庆层面:
 - 远期以工业园为枢纽形成网络,为低成本、深度减排发挥贡献;
 - 通过示范,整合技术链,形成商业模式。
- ▶ 相关企业:
 - 气田废弃设施再利用;
 - 成立联合公司,共同出资建设运营项目。
- ▶ 示范工程初步方案:
 - 威立雅长扬热电厂+超临界管输+黄草峡气田封存;
 - •均化成本312.21元/t CO2, 总成本约51.83亿元;
 - 捕集能耗和成本还需要进一步降低,第一阶段可作为技术测试平台;
 - 主要挑战: 企业间合作模式、激励机制。

Thank you!

Welcome to visit "CO₂ Geological Storage Group"!

Website http://ccus.whrsm.ac.cn/