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More Information

* “Neither the rate nor the magnitude of the
reported late twentieth century surface
warming (1979-2000) lay outside normal
natural variability.

* Historically, increases in atmospheric CO2
followed increases in temperature, they did
not precede them. Therefore, CO2 levels
cound not have forced them.”
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Presentation Focus

Land Based
- Horizontal Fracturing
- Enhance Petroleum Recovery

Ocean Topics
- (Gas Hydrates and Coastal Stability
- Ocean Modelling
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Rationale for Integration of CO2
Sequestration and Petroleum Mining

HYDRAULIC FRACTURING

“Currently the recovery factor for
Eagle Ford Shale wells hovers at
around 6%. This means that as
much as 94% of the oil contained In
the Eagle Ford Shale will remain
there forever, unless some kind of
unconventional method is used to
help force it out of the formation. ”

N http://eaglefordshaleblog.com/2012/06/05/dry-gas-injection-in-the-eagle-ford-shale/
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Well Operation Decline Overview
Average oil production per well during the first 48 months of operation =
barrels per day Cla’
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Economic Benefits

« Adding oil recovery methods adds to the cost of oil —in the case of
CO, typically between 0.5-8.0 US$ per tonne of CO,. The increased extraction
of oil on the other hand, is an economic benefit with the revenue depending on
prevailing prices.

* Onshore EOR has paid in the range of a net 10-16 US$ per tonne of
CO, injected for oil prices of 15-20 US$/barrel.

 Prevailing prices depend on many factors but can determine the economic
suitability of any procedure, with more procedures and more expensive
procedures being economically viable at higher prices. Example: With oil
prices at around 90 US$/barrel, the economic benefit is about 70 US$ per
tonne CO.,.

« The Department of Energy estimates that 20 billion tons of captured
CO, could produce 67 billion barrels of economically recoverable oil.

WUSG{RISH http://en.wikipedia.org/wiki/Enhanced_oil_recovery#Economic_costs_and_benefits
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Example of a CO2 EOR Project

« Boundary Dam, Canada SaskPower's Boundary Dam project retrofitted its coal-fired
power station in 2014 with Carbon Capture and Sequestration technology.

International Sino-Energy Alliance

» The plant will capture 1 million tonnes of CO2 annually, which it will sell to Cenovus
Energy for enhanced oil recovery at its Weyburn Oil Field.

» The project is expected to inject a net 18 million ton CO, and recover an additional 130
million barrels (21,000,000 m3) of oil, extending the life of the oil field by 25 years.

« There is a projected 26+ million tonnes (net of production) of CO2 to be stored in
Weyburn, plus another 8.5 million tonnes (net of production) stored at the Weyburn-
Midale Carbon Dioxide Project, resulting in a net reduction in atmospheric CO, by CO2
storage in the oilfield .

« That's the equivalent of taking nearly 7 million cars off the road for a year. Since
CO, injection began in late 2000, the EOR project has performed largely as predicted.
Currently, some 1600 m? (10,063 barrels) per day of incremental oil is being produced
from the field.

; )\\ http://en.wikipedia.org/wiki/Enhanced_oil_recovery#Economic_costs_and_benefits
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Our Key Objectives "

« Assessment of petroleum enhanced recovery
levels using CO2 pressurization in deep wells.

» Assess CO2 geologic residence time to assess

i . Pre-site Evaluation and Monitoring
sequestration potential.

Seismic Data Soil/Gas Groundwater Data

« Test CO2 pressurization for horizontal fracturing A )
in horizontal well operations.

* & sand/Vadose Zone

» Evaluation of the economic issues related to
materials, completion techniques and e
volume/value of commodities extracted or o B
sequestered to determine the commercial
feasibility of these activities.

Sand/Groundwater
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Deep Well
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» On a broader scale predict financial benefits for
impeding leakage, tax write offs for
sequestration, mitigating litigation also factor into 4-d seismic and radiocarbon
the economics. Confirmation of geologic carbon natural abundance monitoring
sequestration capacity can be applied to
evaluation of property value.

Clay Barrier
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Environmental Assessment

 Vertical fluid and gas migration

 Discrimination between petroleum and
microbial gases
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Methane Source Evaluation
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Methane Hydrate Exploration Related to
Deep Sediment Carbon Dioxide

Sequestration
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. Objective: Determine the affect of sediment geologic and
C02 Hyd rate Stabil Ity geochemical characteristics on the CO, hydrate residence time.

Rationale: CO, diffusion rates on a concentration gradient
across the hydrate interface will vary in different geologic
> systems. The net residence time of sequestered CO, is a
E A function of physical properties and geologic/geochemical
influence on carbon cycles. While diffusion of CO, from
hydrate will occur, geochemical cycles will contribute
substantially to the residence time.

THIE [l | Approach: Experimentation will trace CO, and CH, cycling
with variation of sediment % organic carbon and the pressure
and temperature influence on hydrate stability. Stable carbon
isotope analyses will follow hydrate CO, carbon cycling into
the organic and inorganic carbon pools and back into CH,,.

mining sequestration
CO, biological organic carbon sediment
——> -> _ __ hydrate
diffusion reduction  inorganic carbon stability
zone
CH,

strategic arbon‘
POC: Richard Coffin, rcoffin@strategic-carbon.com
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Loihi Vent Flux

2007 Vent Flux . 301  Microbial Production
04 ° o
25- %
(@]
-200 - 00 o830 20-
8 N °
<ro -400- ‘—I-C|5 15' } }
\—|< | L
-600 0 O 10 ’ E
2
4 (@]
-800 ] . .
0p0 ¢
-1000 - 0 } ,
-1200 : : : : : : . . 5 | |
40 45 50 55 60 65 70 75 80 5 5 . o
pH pH
{

WY TEXAS AsM UNIVERSITY
W\ CORPUS CHRISTI






strategic @arbon.  Atwater Summary /IR
3% Organic Carbon

~50% Organic Carbon — based on A4C
POC

POC

Phytoplankton

Sedimentation /\
Seafloor ]

\ 4

boc 4_{ POC POC |=====p | DOC
47% CH ve SMT
ot or now T 4
Methane Diffusion
Core 2 Core 7
BSR | \
42% Organic Carbon e
- based on D4C 97% QOrganic Carl:l)?n

“‘1" 55% QOrganic Carbon — based on A4C
W CORPUS CHRISTT - based on 813C



strategic | .arbon

ALLIANCE FOR THE FUTURE

A

Carbon Dioxide Vertical Mlgratlon In
Sediments on the Chatham Rise, New Zealand
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http://upload.wikimedia.org/wikipedia/commons/4/4d/Ifm-geomar-logo.gif
http://www.milbarhydro-test.com/
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Coastal SMT Summary
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Site 1, Region 1 Porewater Sulfate, DIC Data
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Site 3, Region 1 Porewater Sulfate, DIC Data
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Figure 3: Sediment pore water profiles of sulfate and dissolved
inorganic carbon (DIC) taken at Sites 1, 2 and 3.

Site

2A

2A
2A

2A
2B
2B
2B

Pore Water Profiles

Core ID

Minimum
(mbsf)
34.4
101.8
22.1
69.0
103.3
100.2
51.5
77.2
16.2
50.5
37.5
23.5
38.0
33.6
51.6
66.5
55.4
77.8
no slope
117.3

0.140, 18
0.829, 25
0.549, 21
0.607, 22
0.774,25
0.763, 27
0.955, 18
0.936, 17
0.988, 27
0.962, 24
0.920, 23
0.958, 13
0.760, 13
0.957, 14
0.859, 12
0.653, 24
0.201, 19
0.185, 21
n.d.
0.622, 18
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Sedimentation Relative to Carbon Age
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o Key Points
N Requirements for Formation Include:
e 9 ,» * Reduced CO2 solubility
‘0. O * Reaction site for nucleation
3‘; * Stable CO2 concentration
Dawsonite

NaAICO;(OH),  pH stability is 3-4

f

Kaolinite
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Vertical Gas Advection or Diffusion
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Conclusions

 Land based CO2 injection to geologic structures can
ne long term sequestration.

« Land based CO2 injection needs to be considered for

norizontal fracturing.

* Land based CO2 injection can provide efficient fuel
recovery in production declined wells.

* Ocean CO2 injection can be used to recover gas
hydrate methane and contribute to coastal stability.

* Ocean CO2 sequestration needs to be monitored for
environmental impact.
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