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More Information 

• “Neither the rate nor the magnitude of the 
reported late twentieth century surface 
warming (1979-2000) lay outside normal 
natural variability. 

• Historically, increases in atmospheric CO2 
followed increases in temperature, they did 
not precede them. Therefore, CO2 levels 
cound not have forced them.” 



Presentation Focus 

Land Based 

- Horizontal Fracturing 

- Enhance Petroleum Recovery 

Ocean Topics 

- Gas Hydrates and Coastal Stability 

- Ocean Modelling 

 



http://eaglefordshaleblog.com/2012/06/05/dry-gas-injection-in-the-eagle-ford-shale/ 

“Currently the recovery factor for 

Eagle Ford Shale wells hovers at 

around 6%. This means that as 

much as 94% of the oil contained in 

the Eagle Ford Shale will remain 

there forever, unless some kind of 

unconventional method is used to 

help force it out of the formation. ” 

Rationale for Integration of CO2  

Sequestration and Petroleum Mining 



Well Operation Decline Overview 



http://en.wikipedia.org/wiki/Enhanced_oil_recovery#Economic_costs_and_benefits 

Economic Benefits 
• Adding oil recovery methods adds to the cost of oil —in the case of 

CO2 typically between 0.5-8.0 US$ per tonne of CO2. The increased extraction 

of oil on the other hand, is an economic benefit with the revenue depending on 

prevailing  prices. 

 

•  Onshore EOR has paid in the range of a net 10-16 US$ per tonne of 

CO2 injected for oil prices of 15-20 US$/barrel.  

 

• Prevailing prices depend on many factors but can determine the economic 

suitability of any procedure, with more procedures and more expensive 

procedures being economically viable at higher prices. Example: With oil 

prices at around 90 US$/barrel, the economic benefit is about 70 US$ per 

tonne CO2.  

 

• The Department of Energy estimates that 20 billion tons of captured 

CO2 could produce 67 billion barrels of economically recoverable oil. 



http://en.wikipedia.org/wiki/Enhanced_oil_recovery#Economic_costs_and_benefits 

• Boundary Dam, Canada SaskPower's Boundary Dam project retrofitted its coal-fired 

power station in 2014 with Carbon Capture and Sequestration technology.  

 

• The plant will capture 1 million tonnes of CO2 annually, which it will sell to Cenovus 

Energy for enhanced oil recovery at its Weyburn Oil Field. 
 

• The project is expected to inject a net 18 million ton CO2 and recover an additional 130 

million barrels (21,000,000 m3) of oil, extending the life of the oil field by 25 years. 

 

• There is a projected 26+ million tonnes (net of production) of CO2 to be stored in 

Weyburn, plus another 8.5 million tonnes (net of production) stored at the Weyburn-

Midale Carbon Dioxide Project, resulting in a net reduction in atmospheric CO2 by CO2 

storage in the oilfield .  

 

• That's the equivalent of taking nearly 7 million cars off the road for a year. Since 

CO2 injection began in late 2000, the EOR project has performed largely as predicted. 

Currently, some 1600 m3 (10,063 barrels) per day of incremental oil is being produced 

from the field. 

Example of a CO2 EOR Project 
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Vertical Well Drilling 
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Horizontal Well Drilling 

Fracking Fracking 



• Assessment of petroleum enhanced recovery 

levels using CO2 pressurization in deep wells.  

 

• Assess CO2 geologic residence time to assess 

sequestration potential. 

 

• Test CO2 pressurization for horizontal fracturing 

in horizontal well operations.   

 

• Evaluation of the economic issues related to 

materials, completion techniques and 

volume/value of commodities extracted or 

sequestered to determine the commercial 

feasibility of these activities.   

 

• On a broader scale predict financial benefits for 

impeding leakage, tax write offs for 

sequestration, mitigating litigation also factor into 

the economics. Confirmation of geologic carbon 

sequestration capacity can be applied to 

evaluation of property value. 

 

Our Key Objectives 
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Environmental Assessment 

• Vertical fluid and gas migration 

• Discrimination between petroleum and 

microbial gases 





Study Locations 
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Methane Hydrate Exploration Related to 

Deep Sediment Carbon Dioxide 

Sequestration  
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Objective:  Determine the affect of sediment geologic and 

geochemical characteristics on the CO2 hydrate residence time. 

 

Rationale: CO2 diffusion rates on a concentration gradient 

across the hydrate interface will vary in different geologic 

systems.  The net residence time of sequestered CO2 is a 

function of physical properties and geologic/geochemical 

influence on carbon cycles.  While diffusion of CO2 from 

hydrate will occur, geochemical cycles will contribute 

substantially to the residence time.  

 

Approach:  Experimentation will trace CO2 and CH4 cycling 

with variation of sediment % organic carbon and the pressure 

and temperature influence on hydrate stability.  Stable carbon 

isotope analyses will follow hydrate CO2 carbon cycling into 

the organic and inorganic carbon pools and back into CH4. 

CO2 Hydrate Stability 

POC: Richard Coffin, rcoffin@strategic-carbon.com 



Loihi Vent Flux 

CO2 Vent Tracing Bacterial Production 
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Atwater Summary 
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Carbon Dioxide Vertical Migration in 

Sediments on the Chatham Rise, New Zealand 

  

http://upload.wikimedia.org/wikipedia/commons/4/4d/Ifm-geomar-logo.gif
http://www.milbarhydro-test.com/
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Chile New Zealand Atwater Valley Alaminos Can. 

Core 

SMT  
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Pore Water Profiles 
Site Core ID SO4

2-

Minimum 

(mbsf)

R2, N

1 44-1-PC9 34.4 0.140, 18

1 45-1-PC9 101.8 0.829, 25

1 51-1-PC9 22.1 0.549, 21

1 52-1-PC9 69.0 0.607, 22

1 53-1-PC9 103.3 0.774,25

1 54-1-PC9 100.2 0.763, 27

2A 73-2-PC9 51.5 0.955, 18

2A 74-1-PC9 77.2 0.936, 17

2A 75-2-PC9 16.2 0.988, 27

2A 76-1-PC9 50.5 0.962, 24

2A 77-2-PC9 37.5 0.920, 23

2B 82-3-PC9 23.5 0.958, 13

2B 83-1-PC9 38.0 0.760, 13

2B 84-1-PC9 33.6 0.957, 14

2B 85-2-PC9 51.6 0.859, 12

3 94-1-PC9 66.5 0.653, 24

3 95-1-PC9 55.4 0.201, 19

3 96-1-PC9 77.8 0.185, 21

3 97-1-PC9 no slope n.d.

3 98-1-PC9 117.3 0.622, 18



Sedimentation Relative to Carbon Age 
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Conclusions 



Vertical Gas Advection or Diffusion 
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Conclusions 
• Land based CO2 injection to geologic structures can 

be long term sequestration. 

• Land based CO2 injection needs to be considered for 

horizontal fracturing. 

• Land based CO2 injection can provide efficient fuel 

recovery in production declined wells. 

• Ocean CO2 injection can be used to recover gas 

hydrate methane and contribute to coastal stability. 

• Ocean CO2 sequestration needs to be monitored for 

environmental impact.  


