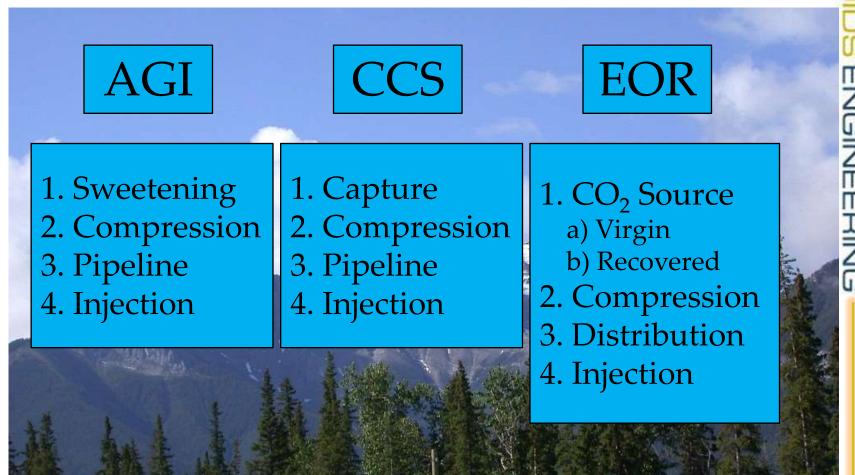
The Three Sisters: CCS, AGI, and CO₂ EOR

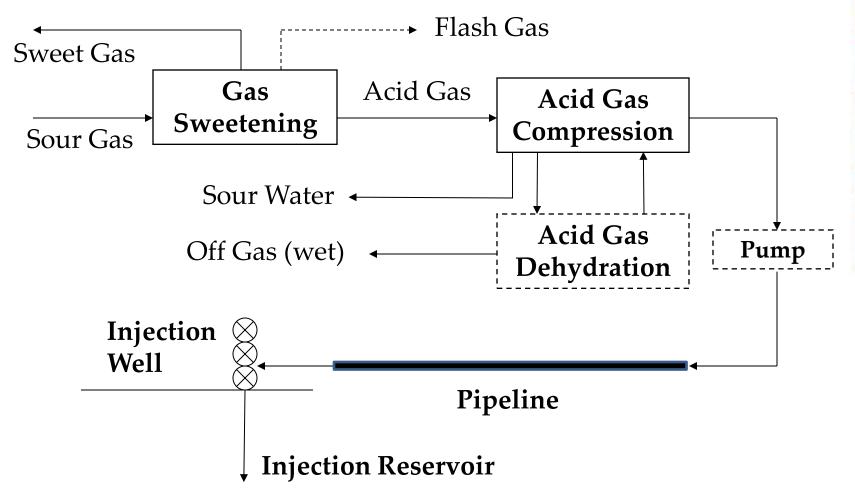
John J. Carroll, PhD, PEng

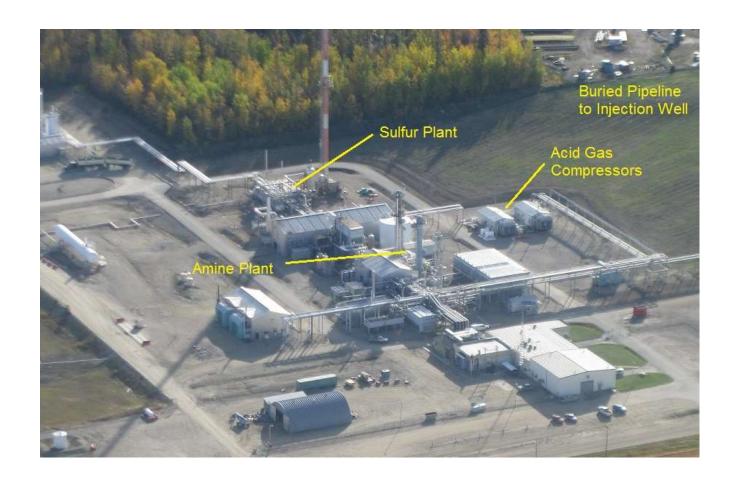
Gas Liquids Engineering Calgary, Alberta


www.gasliquids.com
jcarroll@gasliquids.com

April 2017

The Three Sisters

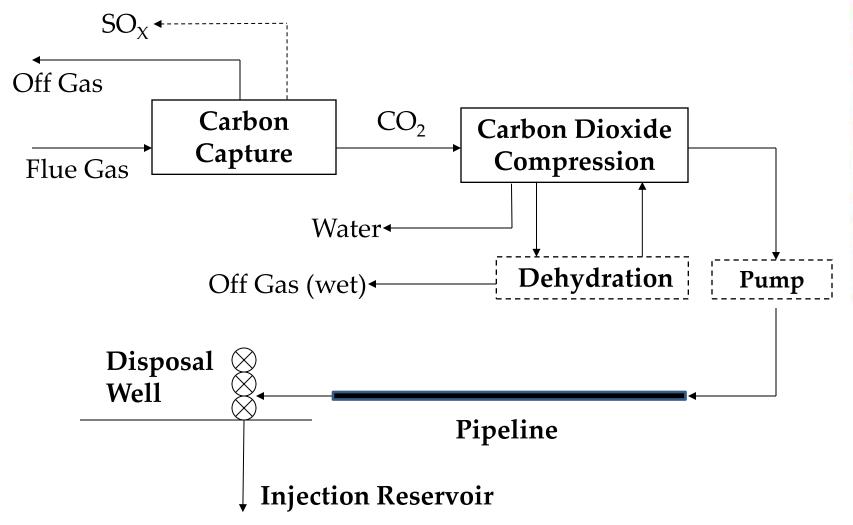

The Three Sisters


Comparing Technologies

	AGI	CCS	CO ₂ EOR
First Project	1989	2016	1972
where:	Acheson, AB	Boundary Dam, SK	West Texas, USA
Number	~50 Canada	~5	~5 Canada
	~25 USA	Shell Quest, AB	~125 USA
	~5 others	NRG Energy, TX	
Largest Size	85 MMSCFD	1.3 Mt/a	220 MMSCFD
	Qatar	(~65 MMSCFD)	SACROC
	66 MMSCFD		90 MMSCFD
	Wyoming		Weyburn, SK

AGI - Block Diagram

South Rosevear Gas Plant


Acid Gas Compressor (Puskwaskau)

Injection Well (Puskwaskau)

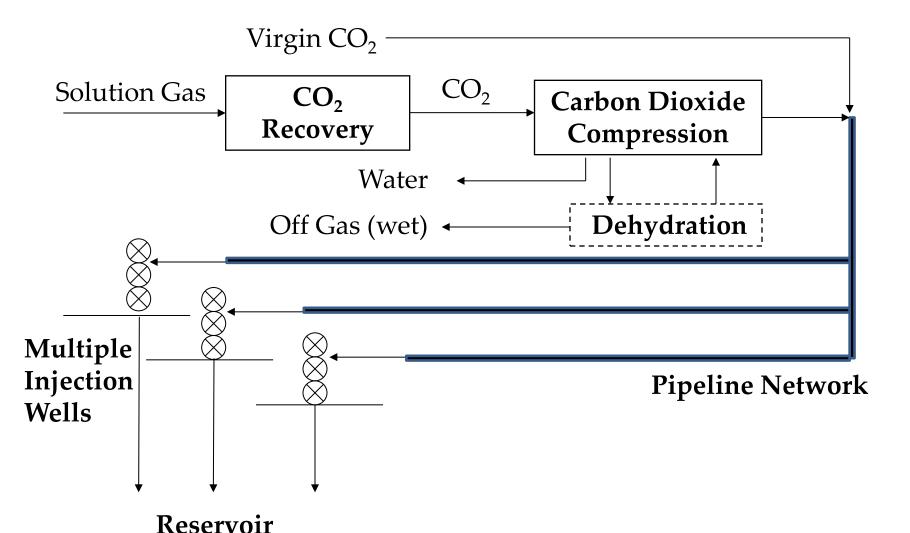
CCS - Block Diagram

Boundary Dam

Sweetening vs. Capture

Gas Sweetening	Carbon Capture	
Source: Raw Natural Gas	<u>Source</u> : Industrial Waste Gas	
 raw gas contains H₂S and/or CO₂ 	 commonly flue gas from burning fossil fuels 	
 may contain mercaptans and other sulfur compounds 	 may contain SOx and O₂ (excess air) which are "poisons" to amine solvents 	

Sweetening vs. Capture


Gas Sweetening	Carbon Capture	
Solvent: Amine and/or Physical	<u>Solvent</u> : Amine	
 a wide range of alkanol- amines are used 	 MEA seems to be the most common 	
 MDEA is now very common – CO₂ slip 	what about MDEA?	
	 because of CO₂ and the "impurities" a reclaimer may be necessary 	

Sweetening vs. Capture

Gas Sweetening	Carbon Capture	
High Pressure	Low Pressure	
(20 to 70 bar)	(less than 2 bar)	
Low Temperature (~50°C)	High Temperature	
	(greater than 100°C)	

High pressure and low temperature favor absorption

CO₂ EOR - Block Diagram

Incentives

AGI	CCS	CO ₂ EOR
Monetize small sour gas plays	"Save the Environment"	Produce more oil, increase profits
Formerly flared acid gas	CO ₂ implicated climate change	Extend the life of older fields
Acid gas H ₂ S lean	Avoid <i>Carbon Tax</i>	Sequester some CO ₂
Avoid sulfur stockpiling	Public image	

It's Just Semantics

- Is Cenovus' Weyburn really a CCS project?
 - Weyburn is an EOR project where CO₂ is injected in order to increase oil production
 - Of the 90 MMSCFD injected about 40 MMSCFD are recycled, however CO₂ is "permanently" sequestered
- Is Statoil's West Sleipner really a CCS project?
 - Sleipner is an AGI project, natural gas is produced, the CO₂ is removed in an amine plant, and is injected into a subsurface reservoir

It's Just Semantics

 Both acid gas injection and CO₂ enhanced oil recovery sequester CO₂ and thus are technically CCS projects

In Summary

- The Three Sisters: AGI, CCS, and CO₂ EOR share many common elements:
 - Compression, water handling, pipeline, reservoir flow, material selection and corrosion considerations, and others
- Lessons learned from the older sisters (the more mature technologies: AGI and CO₂ EOR) can be transferred to the youngest sister (CCS)

謝謝

Thank you!