

CO₂ Capture and Utilization for Driving Regional Economic Growth in Illinois

Dr. Yongqi Lu

Illinois State Geological Survey Prairie Research Institute University of Illinois at Urbana-Champaign

4th Beijing International Forum on CCUS Technology Beijing • April 26, 2017

Prairie Research Institute (PRI) at UIUC

~1,000 scientists and technical support staff; annual budget of \$84 million; basic & applied research and service in resource science & technology and related subjects

Presentation Outline

- Lab/Bench-Scale Research on Innovative CO₂ Capture Technologies
- Large Pilot CO₂ Capture at University Power Plant
- Potential CO₂ Utilization in Illinois

US DOE's Cost Target for CO₂ Capture

- □ 90% capture efficiency
- □ 35% increase in COE for post-combustion
- □ 10% increase in COE for pre-combustion

Trajectories for Meeting USDOE Cost Goals

Reducing parasitic power loss has a significant effect on total cost
 Reducing direct cost (especially capital) also required to fulfill cost goals

USDOE Carbon Capture Program RD&D Roadmap

DOE needs <u>large pilot-scale testing (10-25 MWe) of 2nd Generation</u> <u>Technologies</u> thru 2020

DOE needs R&D efforts of *<u>Transformational Technologies</u>* thru 2030

Post-Combustion CO₂ Capture

- New solvents allow for tunable phase transition behavior (e.g., CO₂ distribution & rich phase vol%)
- Reduced viscosity with separation of rich, viscous phase during absorption improves mass transfer rate and kinetics
- Reduced mass and elevated P for CO₂ stripping

Oxy-combustion CO₂ Capture and Purification

Catalytic Removal of Oxygen and Pollutants in Exhaust Gases from Pressurized Oxy-Combustors (POC)

- Purified CO₂ meeting EOR specs
- Catalysts development & evaluation
- Slipstream testing at a POC facility
- Ongoing project funded by USDOE

Technology merits

- Catalytic direct O₂ reduction by a reductant (e.g. CH₄) in a single reactor to avoid multiple steps and reduce costs
- Catalytic direct contact cooler (DCC) for simultaneous NOx/SO₂/Hg removal in a single device using inexpensive carbonbased catalysts to replace 2 DCCs + 1 Hg adsorption bed

Pre-Combustion CO₂ Capture

Dry sorbent technology for sorption enhanced WGS (SEWGS)

- Materials development & preliminary engineering analysis
- Lab-scale project funded by USDOE
- Bench-scale testing next stage

Novel hollow sorbents with high BET surface

Stable adsorb/desorb performance over multi-cycles

Technology merits

- Simultaneous WGS + CO₂ Capture with complete conversion of CO to CO₂ at >400 °C
- No gas cooling/reheating requirement downstream
- □ No separate CO₂ capture unit required
- □ High CO conv. with reduced steam use

Major activities

- Seven desired sorbents via thermodynamic modeling
- Molecular Dynamics simulations to guide sorbent morphology and dopants selection
- Synthesis of composite sorbents by:
 - Ultrasonic spray pyrolysis
 - Flame spray pyrolysis
 - ✓ Mechanical alloying
- Sorbent evaluation testing in simulated syngases
- Preliminary engineering feasibility study (reactor design, sizing, and cost analysis)

(1) Sayyah et al. ChemSusChem. 2013, 6: 193-198;

(2) Lu et al. Int. J. Hydrogen Energy 2013, 38(16): 6663-6672)

Pilot Testing at University of Illinois' Abbott Power Plant

University of Illinois' Abbott Power Plant:

- Cogeneration of electrical power and heat
- Total electric capacity: 84 MW; Steam capacity: 460 tonne/hr
 3 coal-fired boilers (~35 MW)
 2 natural gas-fired boilers
 2 gas turbines
 - 2 heat recovery steam generators
- ESPs and a wet FGD scrubber in place for coal boilers

- Ideal site for pilot testing of coal and natural gas
- Tradition of evaluating new emission technologies
- Tradition of showcasing technologies to other power plants and education groups

Large Pilot Capture Testing (15 MWe) for Abbott Plant Coal Boilers

- Illinois team led by University: University of Illinois, Linde/BASF, Affiliated Engineers Inc., ACS, and Washing University in St. Louis
- Phase I (Pre-FEED study) awarded to University by USDOE: 10/1/2015- date
- Phase II (build & test): \$75 million project with \$60 million from DOE and \$15 million cost share: proposal pending at USDOE

Overview of Linde/ BASF Capture System

- Innovative water wash section at column top to reduce amine losses;
- High-capacity structured packing;
- Innovative plate & frame design of the reboiler;
- Stripper Interstage Heater (SIH) used to enhance energy efficient CO₂ stripping;
- Variations of the stripper-reboiler flashing configuration

Linde/ BASF OASE® Blue Technology Development

Mini plant

—2001, Ludwigshafen—Solvent performance verification

Pilot: 0.5MWe

- -2009, Niederaussem
- -Process optimization, materials testing

Pilot: 1.5 MWe

—2014, Wilsonville, AL—Design improvements,

Large Pilot: 15 MWe

—2016/20, proposed
—PCC plant cost reduction

Process Performance and Cost Summary 550 MW

Parameter	NETL Case 11	NETL Case 12	Linde Case LB1	Linde Case SIH
Scenario	No capture	CO ₂ Capture with MEA	CO ₂ Capture with OASE [®] blue	CO ₂ Capture with OASE [®] blue and SIH
Net power output (MWe)	550	550	550	550
Gross power output (MWe)	580.3	662.8	638.9	637.6
Coal flow rate (tonne/hr)	186	257	236	232
Net HHV plant efficiency (%)	39.3%	28.4%	30.9%	31.4%
Total overnight cost (\$2011)	1,348	2,415	1,994	1,959
Cost of captured CO ₂ with TS&M(\$/MT)	N/A	67	52	50
Cost of captured CO ₂ without TS&M (\$/MT)	N/A	57	42	40
COE (mills/kWh)	81.0	147.3	128.5	126.5

LB1: Linde-BASF PCC plant incorporating BASF's OASE® blue aqueous amine-based solvent; SIH: LB1 + an advanced stripper inter-stage heater design

Regional & Global Test Bed for CCUS

Concentration of natural resources and intellectual capital

Utilization and Sequestration of Captured CO₂

Utilization of captured CO₂ could creates a new market for Illinois:

- □ CO₂ for enhanced oil recovery and coalbed methane recovery
- □ CO₂ to enhance growth of crops
- CO2 for fuels/chemicals
- CO₂ for food & beverage manufacturing applications
- □ CO₂ for industrial & manufacturing applications (e.g., metal manufacture)
- CO₂ for large volume water treatment
- □ CO₂ for potential treatment of wastes

Illinois CO₂ Emission Sources

Stationary emissions

- Power plants: 101 MT (272 MT in Illinois Basin)
- Industries: 24 MT (32 MT in Illinois Basin)

Illinois Net Electricity Generation by Source, Jan. 2017

Nuclear and coal: two main electricity sources

Illinois Oil& Gas Metrics

- 10 billion bbls unrecovered (4.2 produced)
- Oil & gas industry supports 263,000 jobs
- \$33 billion to the state's economy (5.1% of the state GDP)
- Leads the Midwest in crude oil refining capacity (4th in the US)
- Oil production in ~40 of 102 counties (most in the south of the state)
- 532 oil fields with >16,000 active wells producing >9 million barrels /year

EOR-CO₂ Storage Potential in Illinois

State	CO ₂ Storage Resource (million metric tons)	Estimated EOR* (million barrels)
Illinois	106-358	632–979
Indiana	20-47	124-162
Kentucky	14–35	104–138
Total	140-440 million metric tons	860 million–1.3 billion barrels

USDOE. Carbon Sequestration Atlas (Atlas III). Dec. 2010

ECBM-CO₂ Storage Potential in Illinois

State	CO ₂ Storage Resource* (million metric tons)	Estimated ECBM** (billion scf)	
Illinois	1,470 to 2,900	2,700 to 9,800	
Indiana	86 to 170	150 to 600	
Kentucky	68 to 134	130 to 470	
Total	1.6 to 3.2 billion metric tons	3.0 to 10.9 trillion scf	

USDOE. Carbon Sequestration Atlas (Atlas III). Dec. 2010

- >211 billion tons of identified resources estimated to lie beneath the state
- Demonstrated reserve base is 112 billion tons (2nd largest in US and for bituminous coal, largest)
- >\$2.5 billion in annual economic activity within the State
- Employing ~5,000 miners

Coal: A Significant Resource for Illinois

- Unmineable coal: from 152 to 305 m in depth, seams from 0.48 to 1.1 m in thickness
- Gas contents: 3.1- 4.7 m³/tonne; CO₂ adsorption: 14.1-21.9 m³/tonne at 2,068 kPa

SoyFACE: Evaluating Elevated CO₂ Levels on Crop Growth

FACE ring. Wind direction & speed and CO_2 concentration are measured in the center, then a computer controls which pipes release the gas and how much to release

Fumigation ring is 30-m in diameter. At the center of the ring, wind speed and direction are monitored in real time

http://soyface.illinois.edu/

Free Air Concentration Enrichment (FACE) approach requires no enclosure

CO₂ to Fuels /Chemicals

Catalysts are key to CO₂ conversion processes

Ability to dynamically tuning surface structure and composition (e.g., using a controlled chemical vapor environment to "pull" atoms to surface at proper thermal treatment conditions

(Courtesy by Dr. Hong Yang)

1. Commercially Available Cu Nanoparticles (NPs)

C₂H₄

CO₂

3. N-doped Graphene Quantum Dots

Metal free catalyst: exceptional selectivity and activity towards C₂ products

Addition of N

containing ligand

3,5-diamino-1,2,4-

6. Electrodeposited

CuAgDAT-wire

performance: FEC2H4~ 55% at -0.67 V vs. RHE Total FE for C₂ product > 80%

4. Cu NPs plus DAT in electrolyte 5. Electrodeposited CuDAT-wire

Wire like morphology (more steps and edges) leads to high FEC2H4 at low overpotentials

(Courtesy by Dr. Paul Kenis)

CarbonSAFE ILLINOIS

- \$12 million funding Commercial-scale CCS opportunities for +50 MT CO₂ CCUS in Illinois Basin
 - Geological characterization and utilization options such as EOR
 - drilling, core, modeling
 - Source suitability, options, and proximity to storage
 - Transportation needs
 - Business case scenarios
 - Pre-Feasibility and Feasibility studies

Acknowledgements

Organization	Name
US Department of Energy	Andrew Jones, Parrish Galusky, Bruce Lani, Elaine Everitt
Prairie Research Institute /	Kevin Obrien, Hong Lu, Yang Du, David Ruhter, Vinod
University of Illinois	Patel, Wei Zheng, BK Sharma, Viktoriya Yurkif
Abbott Power Plant /	Michael Larson, David Wilcoxen, Richard Rundus,
University of Illinois	Tracy Malvestuto
College of Engineering /	Paul Kenis, Hong Yang
University of Illinois	
Linde	Krish Krishnamurthy, Makini Byron, Joseph Naumovitz,
	Torsten Stoffregen, Ali Jangi, Andy Poplin
BASF	Sean Rigby
Trimeric Corporation	Ray McKaskle, Kevin Fisher, Andrew Sexton, Brad Piggott
Washington University in	Pratim Biswas, Richard Axelbaum, Sungyoon Jung
St. Louis	
AECOM (URS)	Carl Richardson, Bill Steen, Tom Machalek, Eugenio J.
	Triana, Andrew J. Wang